微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

【2020/1/27】寒假自学——学习进度报告7

  今天想记录下如何在windows环境下远程提交代码到spark集群上面运行。


  spark集群搭建环境使Linux系统,但说实在,Linux系统因为是虚拟机的缘故运行IDE并不是很舒服,想要对python进行舒适的编程操作还不是一件容易事,所以今天记录下如何在Windows下进行spark编程。

  首先是spark的基本安装。

  需要按照集群方式安装,同时虚拟机需要保证能和Windows互联互通(能ping通),这样才能有最基本的环境。

  具体操作按照教程按照集群版的的spark即可,注意的是slave文件内写上虚拟机地址或域名。如果成功安装将可以在Windows里显示如下界面。

 

 

   成功安装完成后就是安装py4j。

  Ubuntu环境下——

apt install pip3
pip3 install py4j

  

 

 

   然后就是配置pycharm的Development。

  首先我们需要配置PyCharm通服务器的代码同步,打开Tools | Deployment | Configuration

  点击左边的“+”添加一个部署配置,输入名字,类型选SFTP

  

  配置Connection。修改好host和用户名密码就行,其余用认配置。

  

 

 

   配置Mapping。我选用认配置,让上传同步的代码放在临时文件夹中。

  

 

 

   测试连接成功后就可以了。配置完成会在下方控制台显示传输信息。

  配置python虚拟环境

  打开File | Settings | Project: untitled | Project Interpreter,右侧点击Add。

  

 

   选择SHH。

  

 

   选择已有环境。

  

 

   选择虚拟机中的python环境。

  

 

   点击Finish后等待pycharm同步即可。

  配置项目环境变量

  新建个py文件,右上角编辑启动配置。

  

 

   修改环境变量。

  

 

   添加如下配置。

  PYTHONPATH=/usr/local/spark/python;SPARK_HOME =/usr/local/spark/;JAVA_HOME=/usr/lib/jvm/jdk1.8.0_162;HADOOP_HOME=/usr/local/hadoop/

  PYTHONPATH选择spark文件夹内的python文件夹,SPARK_HOME 选择spark文件夹,JAVA_HOME可选,HADOOP_HOME可选。

  

 

  配置完成后基本就可以用了。简单测试。

  

from pyspark import SparkContext

sc = SparkContext('spark://hadoop-master:7077', 'exp4')
students = sc.textFile('file:///usr/local/spark/mycode/exp4/chapter5-data1.txt')
qu1 = students.map(lambda line: (line.split(',')[0], 1)).reduceByKey(lambda a, b: a + b)
print(qu1.collect())
qu2 = students.map(lambda line: (line.split(',')[1], 1)).reduceByKey(lambda a, b: a + b)
print(qu2.collect())

  

 

   

 

   完成。

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。

相关推荐