微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

java实现spark常用算子之mapPartitions


import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.VoidFunction;
import java.util.*;

/**
* mapPartitions 算子
* 针对partition的操作,一次会处理一个partition的所有数据
*/
public class MapPartitionsOperator {

public static void main(String[] args){
SparkConf conf = new SparkConf().setMaster("local").setAppName("mapPartitions");
JavaSparkContext sc = new JavaSparkContext(conf);
List<String> names = Arrays.asList("w1","w2","w3","w4");
JavaRDD<String> nameRdd = sc.parallelize(names,2);

final Map<String,Integer> scoreMap = new HashMap<>();
scoreMap.put("w1",1);
scoreMap.put("w2",2);
scoreMap.put("w3",3);
scoreMap.put("w4",4);

JavaRDD<Integer> result = nameRdd.mapPartitions(new FlatMapFunction<Iterator<String>, Integer>() {
private static final long serialVersionUID = 1L;

@Override
public Iterator<Integer> call(Iterator<String> iterator) throws Exception{
List<Integer> list = new ArrayList<>();
while(iterator.hasNext()){
String name = iterator.next();
int score = scoreMap.get(name);
list.add(score);
}
return list.iterator();
}
});


result.foreach(new VoidFunction<Integer>() {
@Override
public void call(Integer integer) throws Exception {
System.err.println("mapPartitions算子:"+integer);
}
});

result.foreachPartition(new VoidFunction<Iterator<Integer>>() {
@Override
public void call(Iterator<Integer> integerIterator) throws Exception {
while (integerIterator.hasNext()){
System.err.println("mapPartitions算子遍历:"+integerIterator.next());
}
}
});


}
}

微信扫描下图二维码加入博主知识星球,获取更多大数据、人工智能、算法等免费学习资料哦!

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。

相关推荐