微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

如何分析spark-mlib的线性回归

如何分析spark-mlib的线性回归,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.ml.feature.VectorAssembler
import org.apache.spark.sql.sqlContext
import org.apache.spark.ml.regression.LinearRegression
object SparkMlib {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("mlib").setMaster("local")
    
    val context = new SparkContext(conf)
    val sqlContext = new sqlContext(context)
    
    val rdd = context.makeRDD(List((1,3,9),(2,6,18),(3,9,27),(4,12,36)))
    val cols = Array("x1","x2")
    val vectors = new VectorAssembler().setInputCols(cols).setoutputCol("predict")
    
    import sqlContext.implicits._
    val x = vectors.transform(rdd.toDF("x1","x2","y"))
    
    val model = new LinearRegression()
                    //自变量的数据名
                    .setFeaturesCol("predict")
                    //因变量
                    .setLabelCol("y")
                    //是否有截距
                    .setFitIntercept(false)
                    //训练模型
                    .fit(x)
                    
     //线性回归的系数              
     println(model.coefficients)
     //线性回归的截距
     println(model.intercept)
     //线性回归的自变量的个数
     println(model.numFeatures)
     //上面的feature列
     println(model.summary.featuresCol)
     //r2
     println(model.summary.r2)
     //平均绝对误差
     println(model.summary.meanAbsoluteError)
     //方差
     println(model.summary.meanSquaredError)
     //新的集合x1,x2 预测y
     val testRdd  = context.makeRDD(List((1,3),(2,6),(3,9),(4,12)))
     //根据上面的模型预测结果
     val testSet = vectors.transform(testRdd.toDF("x1","x2"))
     val pre = model.transform(testSet)
    
     pre.show()
     //println(pre.predictions)
    
  }
}

关于如何分析spark-mlib的线性回归问题的解答就分享到这里了,希望以上内容可以对大家有一定的帮助,如果你还有很多疑惑没有解开,可以关注编程之家行业资讯频道了解更多相关知识。

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。

相关推荐