微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

周期性清除Spark Streaming流状态的方法是什么

本篇文章为大家展示了周期性清除Spark Streaming流状态的方法是什么,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。

在Spark Streaming程序中,我们经常需要使用有状态的流来统计一些累积性的指标,比如各个商品的PV。简单的代码描述如下,使用mapWithState()算子:

 val productPvStream = stream.mapPartitions(records => {
   var result = new ListBuffer[(String, Int)]
     for (record <- records) {
       result += Tuple2(record.key(), 1)
     }
   result.iterator
 }).reduceByKey(_ + _).mapWithState(
   StateSpec.function((productId: String, pv: Option[Int], state: State[Int]) => {
     val sum = pv.getorElse(0) + state.getoption().getorElse(0)
     state.update(sum)
     (productId, sum)
 })).stateSnapshots()
@H_502_18@

现在的问题是,PV并不是一直累加的,而是每天归零,重新统计数据。要达到在凌晨0点清除状态的目的,有以下两种方法

编写脚本重启Streaming程序

用crontab、Azkaban等在凌晨0点调度执行下面的Shell脚本:

stream_app_name='com.xyz.streaming.MallForwardStreaming'
cnt=`ps aux | grep SparkSubmit | grep ${stream_app_name} | wc -l`

if [ ${cnt} -eq 1 ]; then
 pid=`ps aux | grep SparkSubmit | grep ${stream_app_name} | awk '{print $2}'`
 kill -9 ${pid}
 sleep 20
 cnt=`ps aux | grep SparkSubmit | grep ${stream_app_name} | wc -l`
 if [ ${cnt} -eq 0 ]; then
   nohup sh /path/to/streaming/bin/mall_forward.sh > /path/to/streaming/logs/mall_forward.log 2>&1
 fi
fi
@H_502_18@

这种方式最简单,也不需要对程序本身做任何改动。但随着同时运行的Streaming任务越来越多,就会显得越来越累赘了。

给StreamingContext设置超时

在程序启动之前,先计算出当前时间点距离第二天凌晨0点的毫秒数:

def msTillTomorrow = {
 val Now = new Date()
 val tomorrow = new Date(Now.getYear, Now.getMonth, Now.getDate + 1)
 tomorrow.getTime - Now.getTime
}
@H_502_18@

然后将Streaming程序的主要逻辑写在while(true)循环中,并且不像平常一样调用StreamingContext.awaitTermination()方法,而改用awaitTerminationorTimeout()方法,即:

while (true) {
   val ssc = new StreamingContext(sc, Seconds(BATCH_INTERVAL))
   ssc.checkpoint(CHECKPOINT_DIR)

   // ...处理逻辑...

   ssc.start()
   ssc.awaitTerminationorTimeout(msTillTomorrow)
   ssc.stop(false, true)
   Thread.sleep(BATCH_INTERVAL * 1000)
 }
@H_502_18@

在经过msTillTomorrow毫秒之后,StreamingContext就会超时,再调用其stop()方法(注意两个参数,stopSparkContext表示是否停止关联的SparkContext,stopGracefully表示是否优雅停止),就可以停止并重启StreamingContext。

两种方法都是仍然采用Spark Streaming的机制进行状态计算的。如果其他条件允许的话,我们还可以抛弃mapWithState(),直接借助外部存储自己维护状态。比如将Redis的Key设计为product_pv:[product_id]:[date],然后在Spark Streaming的每个批次中使用incrby指令,就能方便地统计PV了,不必考虑定时的问题。

上述内容就是周期性清除Spark Streaming流状态的方法是什么,你们学到知识或技能了吗?如果还想学到更多技能或者丰富自己的知识储备,欢迎关注编程之家行业资讯频道。

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。

相关推荐