微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

[Swift Weekly Contest 119]LeetCode975. 奇偶跳 | Odd Even Jump

You are given an integer array A.  From some starting index,you can make a series of jumps.  The (1st,3rd,5th,...) jumps in the series are called odd numbered jumps,and the (2nd,4th,6th,...) jumps in the series are called even numbered jumps.

You may from index i jump forward to index j (with i < j) in the following way:

  • During odd numbered jumps (ie. jumps 1,3,5,...),you jump to the index j such that A[i] <= A[j] and A[j] is the smallest possible value.  If there are multiple such indexes j,you can only jump to the smallest such index j.
  • During even numbered jumps (ie. jumps 2,4,6,you jump to the index j such that A[i] >= A[j] and A[j] is the largest possible value.  If there are multiple such indexes j,you can only jump to the smallestsuch index j.
  • (It may be the case that for some index i, there are no legal jumps.)

A starting index is good if,starting from that index,you can reach the end of the array (index A.length - 1) by jumping some number of times (possibly 0 or more than once.)

Return the number of good starting indexes. 

Example 1:

Input: [10,13,12,14,15]
Output: 2 Explanation: From starting index i = 0,we can jump to i = 2 (since A[2] is the smallest among A[1],A[2],A[3],A[4] that is greater or equal to A[0]),then we can‘t jump any more. From starting index i = 1 and i = 2,we can jump to i = 3,then we can‘t jump any more. From starting index i = 3,we can jump to i = 4,so we‘ve reached the end. From starting index i = 4,we‘ve reached the end already. In total,there are 2 different starting indexes (i = 3,i = 4) where we can reach the end with some number of jumps. 

Example 2:

Input: [2,1,4]
Output: 3 Explanation: From starting index i = 0,we make jumps to i = 1,i = 2,i = 3: During our 1st jump (odd numbered),we first jump to i = 1 because A[1] is the smallest value in (A[1],A[4]) that is greater than or equal to A[0]. During our 2nd jump (even numbered),we jump from i = 1 to i = 2 because A[2] is the largest value in (A[2],A[4]) that is less than or equal to A[1]. A[3] is also the largest value,but 2 is a smaller index,so we can only jump to i = 2 and not i = 3. During our 3rd jump (odd numbered),we jump from i = 2 to i = 3 because A[3] is the smallest value in (A[3],A[4]) that is greater than or equal to A[2]. We can‘t jump from i = 3 to i = 4,so the starting index i = 0 is not good. In a similar manner,we can deduce that: From starting index i = 1,we jump to i = 4,so we reach the end. From starting index i = 2,we jump to i = 3,and then we can‘t jump anymore. From starting index i = 3,so we reach the end. From starting index i = 4,we are already at the end. In total,there are 3 different starting indexes (i = 1,i = 3,i = 4) where we can reach the end with some number of jumps. 

Example 3:

Input: [5,2]
Output: 3 Explanation: We can reach the end from starting indexes 1,2,and 4. 

Note:

  1. 1 <= A.length <= 20000
  2. 0 <= A[i] < 100000

给定一个整数数组 A,你可以从某一起始索引出发,跳跃一定次数。在你跳跃的过程中,第 1、3、5... 次跳跃称为奇数跳跃,而第 2、4、6... 次跳跃称为偶数跳跃。

你可以按以下方式从索引 i 向后跳转到索引 j(其中 i < j):

  • 在进行奇数跳跃时(如,第 1,3,5... 次跳跃),你将会跳到索引 j,使得 A[i] <= A[j]A[j] 是可能的最小值。如果存在多个这样的索引 j,你只能跳到满足要求的最小索引 j 上。
  • 在进行偶数跳跃时(如,第 2,4,6... 次跳跃),你将会跳到索引 j,使得 A[i] => A[j]A[j] 是可能的最大值。如果存在多个这样的索引 j,你只能跳到满足要求的最小索引 j 上。
  • (对于某些索引 i,可能无法进行合乎要求的跳跃。)

如果从某一索引开始跳跃一定次数(可能是 0 次或多次),就可以到达数组的末尾(索引 A.length - 1),那么该索引就会被认为是好的起始索引。

返回好的起始索引的数量。 

示例 1:

输入:[10,15]
输出:2
解释: 
从起始索引 i = 0 出发,我们可以跳到 i = 2,(因为 A[2] 是 A[1],A[2],A[3],A[4] 中大于或等于 A[0] 的最小值),然后我们就无法继续跳下去了。
从起始索引 i = 1 和 i = 2 出发,我们可以跳到 i = 3,然后我们就无法继续跳下去了。
从起始索引 i = 3 出发,我们可以跳到 i = 4,到达数组末尾。
从起始索引 i = 4 出发,我们已经到达数组末尾。
总之,我们可以从 2 个不同的起始索引(i = 3,i = 4)出发,通过一定数量的跳跃到达数组末尾。

示例 2:

输入:[2,4]
输出:3
解释:
从起始索引 i=0 出发,我们依次可以跳到 i = 1,i = 2,i = 3:

在我们的第一次跳跃(奇数)中,我们先跳到 i = 1,因为 A[1] 是(A[1],A[2],A[3],A[4])中大于或等于 A[0] 的最小值。

在我们的第二次跳跃(偶数)中,我们从 i = 1 跳到 i = 2,因为 A[2] 是(A[2],A[3],A[4])中小于或等于 A[1] 的最大值。A[3] 也是最大的值,但 2 是一个较小的索引,所以我们只能跳到 i = 2,而不能跳到 i = 3。

在我们的第三次跳跃(奇数)中,我们从 i = 2 跳到 i = 3,因为 A[3] 是(A[3],A[4])中大于或等于 A[2] 的最小值。

我们不能从 i = 3 跳到 i = 4,所以起始索引 i = 0 不是好的起始索引。

类似地,我们可以推断:
从起始索引 i = 1 出发, 我们跳到 i = 4,这样我们就到达数组末尾。
从起始索引 i = 2 出发, 我们跳到 i = 3,然后我们就不能再跳了。
从起始索引 i = 3 出发, 我们跳到 i = 4,这样我们就到达数组末尾。
从起始索引 i = 4 出发,我们已经到达数组末尾。
总之,我们可以从 3 个不同的起始索引(i = 1,i = 4)出发,通过一定数量的跳跃到达数组末尾。

示例 3:

输入:[5,2]
输出:3
解释: 
我们可以从起始索引 1,2,4 出发到达数组末尾。 

提示

  1. 1 <= A.length <= 20000
  2. 0 <= A[i] < 100000

超出时间限制

 1 class Solution {
 2     func oddEvenJumps(_ A: [Int]) -> Int {
 3         var n:Int = A.count
 4         var res:Int = 1
 5         var higher:[Bool] = [Bool](repeating:false,count:n)
 6         var lower:[Bool] = [Bool](repeating:false,count:n)
 7         higher[n - 1] = true
 8         lower[n - 1] = true
 9         var map:[Int:Int] = [Int:Int]()
10         map[A[n - 1]] = n - 1
11         for i in stride(from:n - 2,through:0,by:-1)
12         {
13             var hi:Int? = nil
14             for num in map.keys
15             {
16                 if num >= A[i]
17                 {
18                     if hi == nil
19                     {
20                         hi = num
21                     }
22                     else
23                     {
24                         if num < hi!
25                         {
26                             hi = num
27                         }
28                     }
29                 }
30             }
31             var lo:Int? = nil
32             for num in map.keys
33             {
34                 if num <= A[i]
35                 {
36                     if lo == nil
37                     {
38                         lo = num
39                     }
40                     else
41                     {
42                         if num > lo!
43                         {
44                             lo = num
45                         }
46                     }
47                 }
48             }
49             if hi != nil && map[hi!] != nil
50             {
51                 higher[i] = lower[map[hi!]!]
52             }
53             
54             if lo != nil && map[lo!] != nil
55             {
56                 lower[i] = higher[map[lo!]!]
57             }
58             if higher[i]
59             {
60                 res += 1
61             }
62             map[A[i]] = i
63         }
64         return res
65     }
66 }

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。

相关推荐