You are given an integer array A
. From some starting index,you can make a series of jumps. The (1st,3rd,5th,...) jumps in the series are called odd numbered jumps,and the (2nd,4th,6th,...) jumps in the series are called even numbered jumps.
You may from index i
jump forward to index j
(with i < j
) in the following way:
- During odd numbered jumps (ie. jumps 1,3,5,...),you jump to the index j such that
A[i] <= A[j]
andA[j]
is the smallest possible value. If there are multiple such indexesj
,you can only jump to the smallest such indexj
. - During even numbered jumps (ie. jumps 2,4,6,you jump to the index j such that
A[i] >= A[j]
andA[j]
is the largest possible value. If there are multiple such indexesj
,you can only jump to the smallestsuch indexj
. - (It may be the case that for some index
i,
there are no legal jumps.)
A starting index is good if,starting from that index,you can reach the end of the array (index A.length - 1
) by jumping some number of times (possibly 0 or more than once.)
Return the number of good starting indexes.
Example 1:
Input: [10,13,12,14,15]
Output: 2 Explanation: From starting index i = 0,we can jump to i = 2 (since A[2] is the smallest among A[1],A[2],A[3],A[4] that is greater or equal to A[0]),then we can‘t jump any more. From starting index i = 1 and i = 2,we can jump to i = 3,then we can‘t jump any more. From starting index i = 3,we can jump to i = 4,so we‘ve reached the end. From starting index i = 4,we‘ve reached the end already. In total,there are 2 different starting indexes (i = 3,i = 4) where we can reach the end with some number of jumps.
Example 2:
Input: [2,1,4]
Output: 3 Explanation: From starting index i = 0,we make jumps to i = 1,i = 2,i = 3: During our 1st jump (odd numbered),we first jump to i = 1 because A[1] is the smallest value in (A[1],A[4]) that is greater than or equal to A[0]. During our 2nd jump (even numbered),we jump from i = 1 to i = 2 because A[2] is the largest value in (A[2],A[4]) that is less than or equal to A[1]. A[3] is also the largest value,but 2 is a smaller index,so we can only jump to i = 2 and not i = 3. During our 3rd jump (odd numbered),we jump from i = 2 to i = 3 because A[3] is the smallest value in (A[3],A[4]) that is greater than or equal to A[2]. We can‘t jump from i = 3 to i = 4,so the starting index i = 0 is not good. In a similar manner,we can deduce that: From starting index i = 1,we jump to i = 4,so we reach the end. From starting index i = 2,we jump to i = 3,and then we can‘t jump anymore. From starting index i = 3,so we reach the end. From starting index i = 4,we are already at the end. In total,there are 3 different starting indexes (i = 1,i = 3,i = 4) where we can reach the end with some number of jumps.
Example 3:
Input: [5,2]
Output: 3 Explanation: We can reach the end from starting indexes 1,2,and 4.
Note:
1 <= A.length <= 20000
0 <= A[i] < 100000
给定一个整数数组 A
,你可以从某一起始索引出发,跳跃一定次数。在你跳跃的过程中,第 1、3、5... 次跳跃称为奇数跳跃,而第 2、4、6... 次跳跃称为偶数跳跃。
你可以按以下方式从索引 i
向后跳转到索引 j
(其中 i < j
):
- 在进行奇数跳跃时(如,第 1,3,5... 次跳跃),你将会跳到索引
j
,使得A[i] <= A[j]
,A[j]
是可能的最小值。如果存在多个这样的索引j
,你只能跳到满足要求的最小索引j
上。 - 在进行偶数跳跃时(如,第 2,4,6... 次跳跃),你将会跳到索引
j
,使得A[i] => A[j]
,A[j]
是可能的最大值。如果存在多个这样的索引j
,你只能跳到满足要求的最小索引j
上。 - (对于某些索引
i
,可能无法进行合乎要求的跳跃。)
如果从某一索引开始跳跃一定次数(可能是 0 次或多次),就可以到达数组的末尾(索引 A.length - 1
),那么该索引就会被认为是好的起始索引。
返回好的起始索引的数量。
示例 1:
输入:[10,15] 输出:2 解释: 从起始索引 i = 0 出发,我们可以跳到 i = 2,(因为 A[2] 是 A[1],A[2],A[3],A[4] 中大于或等于 A[0] 的最小值),然后我们就无法继续跳下去了。 从起始索引 i = 1 和 i = 2 出发,我们可以跳到 i = 3,然后我们就无法继续跳下去了。 从起始索引 i = 3 出发,我们可以跳到 i = 4,到达数组末尾。 从起始索引 i = 4 出发,我们已经到达数组末尾。 总之,我们可以从 2 个不同的起始索引(i = 3,i = 4)出发,通过一定数量的跳跃到达数组末尾。
示例 2:
输入:[2,4] 输出:3 解释: 从起始索引 i=0 出发,我们依次可以跳到 i = 1,i = 2,i = 3: 在我们的第一次跳跃(奇数)中,我们先跳到 i = 1,因为 A[1] 是(A[1],A[2],A[3],A[4])中大于或等于 A[0] 的最小值。 在我们的第二次跳跃(偶数)中,我们从 i = 1 跳到 i = 2,因为 A[2] 是(A[2],A[3],A[4])中小于或等于 A[1] 的最大值。A[3] 也是最大的值,但 2 是一个较小的索引,所以我们只能跳到 i = 2,而不能跳到 i = 3。 在我们的第三次跳跃(奇数)中,我们从 i = 2 跳到 i = 3,因为 A[3] 是(A[3],A[4])中大于或等于 A[2] 的最小值。 我们不能从 i = 3 跳到 i = 4,所以起始索引 i = 0 不是好的起始索引。 类似地,我们可以推断: 从起始索引 i = 1 出发, 我们跳到 i = 4,这样我们就到达数组末尾。 从起始索引 i = 2 出发, 我们跳到 i = 3,然后我们就不能再跳了。 从起始索引 i = 3 出发, 我们跳到 i = 4,这样我们就到达数组末尾。 从起始索引 i = 4 出发,我们已经到达数组末尾。 总之,我们可以从 3 个不同的起始索引(i = 1,i = 4)出发,通过一定数量的跳跃到达数组末尾。
示例 3:
输入:[5,2] 输出:3 解释: 我们可以从起始索引 1,2,4 出发到达数组末尾。
提示:
1 <= A.length <= 20000
0 <= A[i] < 100000
超出时间限制
1 class Solution { 2 func oddEvenJumps(_ A: [Int]) -> Int { 3 var n:Int = A.count 4 var res:Int = 1 5 var higher:[Bool] = [Bool](repeating:false,count:n) 6 var lower:[Bool] = [Bool](repeating:false,count:n) 7 higher[n - 1] = true 8 lower[n - 1] = true 9 var map:[Int:Int] = [Int:Int]() 10 map[A[n - 1]] = n - 1 11 for i in stride(from:n - 2,through:0,by:-1) 12 { 13 var hi:Int? = nil 14 for num in map.keys 15 { 16 if num >= A[i] 17 { 18 if hi == nil 19 { 20 hi = num 21 } 22 else 23 { 24 if num < hi! 25 { 26 hi = num 27 } 28 } 29 } 30 } 31 var lo:Int? = nil 32 for num in map.keys 33 { 34 if num <= A[i] 35 { 36 if lo == nil 37 { 38 lo = num 39 } 40 else 41 { 42 if num > lo! 43 { 44 lo = num 45 } 46 } 47 } 48 } 49 if hi != nil && map[hi!] != nil 50 { 51 higher[i] = lower[map[hi!]!] 52 } 53 54 if lo != nil && map[lo!] != nil 55 { 56 lower[i] = higher[map[lo!]!] 57 } 58 if higher[i] 59 { 60 res += 1 61 } 62 map[A[i]] = i 63 } 64 return res 65 } 66 }
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。