A chess knight can move as indicated in the chess diagram below:
This time,we place our chess knight on any numbered key of a phone pad (indicated above),and the knight makes N-1
hops. Each hop must be from one key to another numbered key.
Each time it lands on a key (including the initial placement of the knight),it presses the number of that key,pressing N
digits total.
How many distinct numbers can you dial in this manner?
Since the answer may be large, output the answer modulo 10^9 + 7
.
Example 1:
Input: 1
Output: 10
Example 2:
Input: 2
Output: 20
Example 3:
Input: 3
Output: 46
Note:
-
1 <= N <= 5000
国际象棋中的骑士可以按下图所示进行移动:
这一次,我们将 “骑士” 放在电话拨号盘的任意数字键(如上图所示)上,接下来,骑士将会跳 N-1 步。每一步必须是从一个数字键跳到另一个数字键。
每当它落在一个键上(包括骑士的初始位置),都会拨出键所对应的数字,总共按下 N
位数字。
你能用这种方式拨出多少个不同的号码?
因为答案可能很大,所以输出答案模 10^9 + 7
。
示例 1:
输入:1 输出:10
示例 2:
输入:2 输出:20
示例 3:
输入:3 输出:46
提示:
1 <= N <= 5000
1 class Solution { 2 func knightDialer(_ N: Int) -> Int { 3 var N = N 4 var mod:Int64 = 1000000007 5 N -= 1 6 var dp:[Int64] = [Int64](repeating: 1,count: 10) 7 for i in 0..<N 8 { 9 var ndp:[Int64] = [Int64](repeating: 0,count: 10) 10 ndp[0] = dp[4] + dp[6] 11 ndp[1] = dp[6] + dp[8] 12 ndp[2] = dp[7] + dp[9] 13 ndp[3] = dp[4] + dp[8] 14 ndp[4] = dp[3] + dp[9] + dp[0] 15 ndp[6] = dp[1] + dp[7] + dp[0] 16 ndp[8] = dp[1] + dp[3] 17 ndp[7] = dp[2] + dp[6] 18 ndp[9] = dp[2] + dp[4] 19 for j in 0..<10 20 { 21 ndp[j] %= mod 22 } 23 dp = ndp 24 } 25 var ret:Int64 = 0 26 for i in 0..<10 27 { 28 ret += dp[i] 29 } 30 return Int(ret % mod) 31 } 32 }
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。