Given a square array of integers A
,we want the minimum sum of a falling path through A
.
A falling path starts at any element in the first row,and chooses one element from each row. The next row‘s choice must be in a column that is different from the prevIoUs row‘s column by at most one.
Example 1:
Input: [[1,2,3],[4,5,6],[7,8,9]]
Output: 12 Explanation: The possible falling paths are:
[1,4,7],[1,8],9]
[2,[2,9],6,9]
[3,[3,9]
The falling path with the smallest sum is [1,7]
,so the answer is 12
.
Note:
1 <= A.length == A[0].length <= 100
-100 <= A[i][j] <= 100
给定一个方形整数数组 A
,我们想要得到通过 A
的下降路径的最小和。
下降路径可以从第一行中的任何元素开始,并从每一行中选择一个元素。在下一行选择的元素和当前行所选元素最多相隔一列。
示例:
输入:[[1,9]] 输出:12 解释: 可能的下降路径有:
[1,9]
和最小的下降路径是 [1,7]
,所以答案是 12
。
提示:
1 <= A.length == A[0].length <= 100
-100 <= A[i][j] <= 100
196ms
1 class Solution { 2 func minFallingPathSum(_ A: [[Int]]) -> Int { 3 let m:Int = A[0].count 4 var dp:[Int] = A[0] 5 for j in 0..<(A.count - 1) 6 { 7 var row:[Int] = A[j] 8 var ndp:[Int] = [Int](repeating: Int.max / 2,count: m) 9 for i in 0..<m 10 { 11 for k in -1...1 12 { 13 if i+k >= 0 && i+k < m 14 { 15 ndp[i + k] = min(ndp[i + k],dp[i] + A[j + 1][i + k]) 16 } 17 } 18 } 19 dp = ndp 20 } 21 var ret:Int = Int.max 22 for v in dp 23 { 24 ret = min(ret,v) 25 } 26 return ret 27 } 28 }
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。