微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

Tensorflow

tf的特征就是,所有东西都是操作,在run之前,都是保存了操作,实际run之后才出现值。

这也符合变量的性质把

 

tf.cinstant 创建标量矩阵

tf有一套矩阵运算操作,,

 

#Session: 用来进行执行操作

sess = tf.Session()

res = sess.run(某个操作)

sess.close()

 

 

#Varaible: tf里面所有变量要被定义成tf.Varaible

var = tf.Varaible(value,xxxx)

init = tf.initialize_all_varaibles()

with tf.Session() as sess:

  sess.run(init)#先运行init

  sess.run(操作)#再运行神经网络操作

  print(sess.run(var))#打印时候,也要sess.run()的指针挂上去

 

#placeholder,占位器,运行时传入实际数据。为什么需要placeholder呢,为了避免显式的制定数据的size?显式的定义,有时候要指明矩阵形状,调整起来麻烦

ip1 = tf.placeholder(tf.float32)

op1 = tf.multiply(ip1,ip1)

with tf.Session as sess:

  sess.run(op1,Feed_dict = {ip1:xxxx})#Feed_dict参数可以用字典形式传入对应的值

 

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。

相关推荐