微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

吴裕雄 python 神经网络——TensorFlow 图像预处理完整样例

import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt

def distort_color(image, color_ordering=0):
    if color_ordering == 0:
        image = tf.image.random_brightness(image, max_delta=32./255.)
        image = tf.image.random_saturation(image, lower=0.5, upper=1.5)
        image = tf.image.random_hue(image, max_delta=0.2)
        image = tf.image.random_contrast(image, lower=0.5, upper=1.5)
    else:
        image = tf.image.random_saturation(image, lower=0.5, upper=1.5)
        image = tf.image.random_brightness(image, max_delta=32./255.)
        image = tf.image.random_contrast(image, lower=0.5, upper=1.5)
        image = tf.image.random_hue(image, max_delta=0.2)

    return tf.clip_by_value(image, 0.0, 1.0)

def preprocess_for_train(image, height, width, bBox):
    # 查看是否存在标注框。
    if bBox is None:
        bBox = tf.constant([0.0, 0.0, 1.0, 1.0], dtype=tf.float32, shape=[1, 1, 4])
    if image.dtype != tf.float32:
        image = tf.image.convert_image_dtype(image, dtype=tf.float32)
        
    # 随机截取图片一个块。
    bBox_begin, bBox_size, _ = tf.image.sample_distorted_bounding_Box(tf.shape(image), bounding_Boxes=bBox, min_object_covered=0.4)
    bBox_begin, bBox_size, _ = tf.image.sample_distorted_bounding_Box(tf.shape(image), bounding_Boxes=bBox, min_object_covered=0.4)
    distorted_image = tf.slice(image, bBox_begin, bBox_size)

    # 将随机截取图片调整为神经网络输入层的大小。
    distorted_image = tf.image.resize_images(distorted_image, [height, width], method=np.random.randint(4))
    distorted_image = tf.image.random_flip_left_right(distorted_image)
    distorted_image = distort_color(distorted_image, np.random.randint(2))
    return distorted_image

image_raw_data = tf.gfile.FastGFile("F:\\TensorFlowGoogle\\201806-github\\datasets\\cat.jpg", "rb").read()

with tf.Session() as sess:
    img_data = tf.image.decode_jpeg(image_raw_data)
    Boxes = tf.constant([[[0.05, 0.05, 0.9, 0.7], [0.35, 0.47, 0.5, 0.56]]])
    for i in range(9):
        result = preprocess_for_train(img_data, 299, 299, Boxes)
        plt.imshow(result.eval())
        plt.show()

 

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。

相关推荐