二分类模型的评价指标
https://www.cnblogs.com/xiaoniu-666/p/10511694.html
参考tf的方法
predictions = tf.argmax(predict, 1) actuals = tf.argmax(real, 1)
ones_like_actuals = tf.ones_like(actuals) zeros_like_actuals = tf.zeros_like(actuals) ones_like_predictions = tf.ones_like(predictions) zeros_like_predictions = tf.zeros_like(predictions)
Lable: 1 1 0 0 predi: 1 0 0 1 Tp Fp Tn Fn tp: = and 1 tn = ont(or) 1 lab-pred: 0 1 0 -1 lab-pred>=0.6: 0 1 0 0 fp = and(lable, lab-pred): 0 1 0 1 lab-pred<=-1.0: 0 0 0 1 not-lable: 0 0 1 1 fn = and(not-lable, lab-pred<-1.0)
可能用到的方法:
tf.less_equal tf.less tf.greater_equal tf.greater
count_nonzero
参考:
https://blog.csdn.net/sinat_35821976/article/details/81334181
https://tensorflow.google.cn/api_docs/python/tf/math/count_nonzero
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。