微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

TensorFlow写的神经网络不work的原因

for epoch in range(training_steps):
    with tf.Session() as sess:
        sess.run(tf.global_variable_initializer())
        sess.run(train_op)
        if epoch % 100 == 0 :
            print(sess.run([loss]))

上述代码写后,trian loss 和 valid loss 一致都不怎么变化,好像神经网络完全没有在训练一样。这是因为每训练一次后,weight和bias都被重新初始化了。

# 正确方法
with tf.Session() as sess:
    sess.run(tf.global_variable_initializer())
    for epoch in range(training_steps):
        sess.run(train_op)
        if epoch % 100 = 0:
            print(sess.run([loss]))

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。

相关推荐