二叉树总结
1. 二叉树的重要性质
一个二叉树的第i层最多有
2i−1 个结点(i>=1)深度为k的二叉树最多有
2k−1 个结点(k>=1)- 对于任何非空二叉树有
n0 个叶结点,n2 个度为2的结点,那么总有关系:
n0=n2+1
2.对二叉树的操作
Boolean IsEmpty(BinTree BT);//判断BT是否为空。
void Traversal(BinTree BT);//遍历二叉树,按顺序访问每个结点。
BinTree CreatBinTree();//创建一个二叉树
3.四种遍历方法
void PreorderTraversal(BinTree BT); 先序遍历:根节点->左子树->右子树;
void InorderTraversal(BinTree BT); 中序遍历:左子树->根节点->右子树;
void postorderTraversal(BinTree BT); 后序遍历:左子树->右子树->根节点;
void LevelorderTraversal(BinTree BT);层次遍历,从上到下,从左到右。
4.二叉树的存储结构
4.1顺序存储
对于完全二叉树可以用数组进行存储,按从上到下,从左到右的顺序进行。
节点 | A | B | O | C | S | M | Q | W | K |
---|---|---|---|---|---|---|---|---|---|
序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
这种存储方式有以下性质:
1.序号为i的非根结点的父结点序号为⌊i/2⌋(向下取整)
2.结点i的左儿子序号为2i(2i<=n,n为结点总数)
2.结点i的右儿子序号为2i+1(2i+1<=n,n为结点总数)
3.对于一般的二叉树也可以用这种方式存储,但是会造成空间浪费
4.2链式存储
typedef struct TreeNode *BinTree;
typedef BinTree position;
struct TreeNode{
ElementType Data;
BinTree Left;
BinTree Right;
}
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。