微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

NumPy 教程第 5 章:从已有的 Python 数组创建 Ndarray 数组

numpy.asarray函数类似于numpy.array,它有较少的参数

numpy.asarray(a,dtype = None,order = None)
  • a 任意形式的输入参数,比如列表、列表的元组元组元组元组元组的列表

  • dtype 通常,输入数据的类型会应用到返回的 ndarray

  • order ‘C’ 为按行的 C 风格数组,‘F’ 为按列的 Fortran 风格数组

asarray 方法语法:

In [1]: import numpy as np

In [2]: x = [1,2,3]

In [3]: num = np.asarray(x)

In [4]: num
Out[4]: array([1,3])

In [5]: num = np.asarray(x,dtype=float)

In [6]: num
Out[6]: array([1.,2.,3.])

In [7]: x = (1,3)

In [8]: num = np.asarray(x)

In [9]: num
Out[9]: array([1,3])

numpy.frombuffer 用于实现动态数组,接受 buffer 输入参数,以流的形式读入转化成 ndarray 对象

numpy.frombuffer(buffer,dtype = float,count = -1,offset = 0)
  • buffer 可以是任意对象,会以流的形式读入

  • dtype 返回数组的数据类型,可选

  • count 读取的数据数量认为-1,读取所有数据

  • offset 读取的起始位置,认为0

frombuffer 方法语法:

In [1]: import numpy as np

In [2]: s =  b'Hello World'

In [3]: num = np.frombuffer(s,dtype='S1')

In [4]: num
Out[4]:
array([b'H',b'e',b'l',b'o',b' ',b'W',b'r',b'd'],dtype='|S1')

numpy.fromiter 方法从可迭代对象中建立 ndarray 对象,返回一维数组

numpy.fromiter(iterable,dtype,count = -1)
  • iterable 可迭代对象

  • dtype 返回数组的数据类型

  • count 读取的数据数量认为-1,读取所有数据

fromiter 方法语法:

In [1]: import numpy as np

In [2]: x = range(5)

In [3]: it = iter(x)

In [4]: num = np.fromiter(it,dtype=float)

In [5]: num
Out[5]: array([0.,1.,3.,4.])

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。

相关推荐